CST-502 (Distributed Computing Systems + Computer Networking) Course Description

Course code number	CST-502	Course Title	Distributed Computing Systems	
Semester hours	75 minutes	No. of Credit Units	1.5	
Prerequisite	CST-201 (Java Programming) CST-301 (Operating Systems)	Course Coordinator	Dr. Sabai Phyu Dr. Thi Dar Win	

Course Objectives

The aim of this course is to help students the fundamental issues of designing and engineering distributed systems with reference to partial failure, heterogeneity, scalability, concurrency and asynchrony. This course deals with the major recent developments in distributed systems technology.

Learning Outcomes

Upon the successful completion of this course, students will be able to:

- gain a clear understanding of the concepts that underlie distributed computing systems along with design and implementation issues
- · understand key mechanisms and models for distributed systems
- identify the core concepts of distributed systems: the way in which several machines orchestrate to correctly solve problems in an efficient, reliable and scalable way
- create an awareness of the fundamental technical challenges in advanced distributed systems design and implementation
- present the principles underlying the function of distributed systems and their extension to grid and cloud computing and virtualization techniques

Reference Book

 Distributed Systems Concepts and Design, 5th Edition, by George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair http://www.cdk5.net/wp/

Course Organization

Student participation in the course will involve the following activities:

- 1. Attending the lectures
- 2. Assignments
- 3. Tutorial
- 4. Moodle
- 5. Project
- 6. Exams

Assessment Plan for the Course (Distributed Systems 50% + Computer Networking 50%)

Paper Exam	25%
Tutorial/Assignment	10%
Project	5%
Moodle Test	5%
Class participation	5%

University of Computer Studies, Yangon B.C.Sc./B.C.Tech.(Fifth Year)

Period: 15 periods for 15 weeks (75 minutes for 1 period)

No.	Chapter	Page	Period	Detail Lecture Plan
	Chapter 1. Characterization of Distributed Systems	1 to 16	2	Lectures + Assignment
1.	1.1 Introduction1.2 Examples of distributed systems1.3 Trends in distributed systems1.4 Focus on resource sharing		2	
	Chapter 2. System Models	37 to 76	3	Lectures + Assignment
2.	2.1 Introduction2.2 Physical models2.3 Architectural models2.4 Fundamental models		3	
	Chapter 5. Remote Invocation	186 to 225	3	Lectures + Assignment
3.	 5.1 Introduction 5.2 Request-reply protocols 5.3 Remote procedure call 5.4 Remote method invocation 5.5 Case study: Java RMI 		3	Detail explanation RMI Architecture Framework
	Chapter 7. Operating System Support	280 to 331	3	Lectures + Assignment
4.	 7.1 Introduction 7.2 The operating system layer 7.3 Protection 7.4 Processes and threads 7.5 Communication and invocation 7.6 Operating system architecture 7.7 Virtualization at the operating system level 		3	
5.	RMI Project		3	
6.	Revision		1	For the whole lecture